Для a = π/3:
cos(2a) = cos(2 π/3) = cos(2/3 π) = cos(2/3 π + 2π) = cos(8/3 π) = cos(2/3 π) = cos(2 π/3) = cos(2/3 π) = cos(2/3 π) = cos(2 π/3) = cos(2/3 π) = cos(2/3 * π) = -1/2
sin(2a) = sin(2 π/3) = sin(2/3 π) = sin(2/3 π + 2π) = sin(8/3 π) = sin(2/3 π) = sin(2 π/3) = sin(2/3 π) = sin(2/3 π) = sin(2 π/3) = sin(2/3 π) = sin(2/3 * π) = (√3)/2
Теперь подставляем значения:
2(cos 2a cos a + sin 2a sin a) + cos 3a = 2((-1/2)(cos(π/3)) + (√3/2)(sin(π/3))) + cos(π) = 2((-1/2)(1/2) + (√3/2)(√3/2)) + (-1) = 2((-1/4) + (3/4)) - 1 = 2(2/4) - 1 = 1 - 1 = 0
Таким образом, упрощенное выражение равно 0 при a = π/3.
Для a = π/3:
cos(2a) = cos(2 π/3) = cos(2/3 π) = cos(2/3 π + 2π) = cos(8/3 π) = cos(2/3 π) = cos(2 π/3) = cos(2/3 π) = cos(2/3 π) = cos(2 π/3) = cos(2/3 π) = cos(2/3 * π) = -1/2
sin(2a) = sin(2 π/3) = sin(2/3 π) = sin(2/3 π + 2π) = sin(8/3 π) = sin(2/3 π) = sin(2 π/3) = sin(2/3 π) = sin(2/3 π) = sin(2 π/3) = sin(2/3 π) = sin(2/3 * π) = (√3)/2
Теперь подставляем значения:
2(cos 2a cos a + sin 2a sin a) + cos 3a = 2((-1/2)(cos(π/3)) + (√3/2)(sin(π/3))) + cos(π) = 2((-1/2)(1/2) + (√3/2)(√3/2)) + (-1) = 2((-1/4) + (3/4)) - 1 = 2(2/4) - 1 = 1 - 1 = 0
Таким образом, упрощенное выражение равно 0 при a = π/3.