Найдем производную функции y = 2 * x^3 - 6 * x^2 - 18 * x + 7.
y ' = 2 * 3 * x^(3 - 1) - 6 * 2 * x^(2 - 1) - 18 * 1 + 0 = 6 * x^2 - 12 * x - 18 = 6 * (x^2 - 2 * x - 3);
Приравняем производную к 0 и найдем корни.
x^2 - 2 * x - 3 = 0;
D = 4 - 4 * 1 * (-3) = 16;
x1 = (2 + 4)/2 = 3;
x2 = (2 - 4)/2 = -1;
Функция возрастает на промежутке (-∞; -1) и (3; +∞), и убывает на (-1; 3).
Найдем производную функции y = 2 * x^3 - 6 * x^2 - 18 * x + 7.
y ' = 2 * 3 * x^(3 - 1) - 6 * 2 * x^(2 - 1) - 18 * 1 + 0 = 6 * x^2 - 12 * x - 18 = 6 * (x^2 - 2 * x - 3);
Приравняем производную к 0 и найдем корни.
x^2 - 2 * x - 3 = 0;
D = 4 - 4 * 1 * (-3) = 16;
x1 = (2 + 4)/2 = 3;
x2 = (2 - 4)/2 = -1;
Функция возрастает на промежутке (-∞; -1) и (3; +∞), и убывает на (-1; 3).