The given expression can be simplified by using the formula for the sum of two cube roots:
∛(a) + ∛(b) = ∛(a+b+3√(ab))
In this case, a = 16 + 8√5 and b = 16 - 8√5.
Now, let's find the value of a + b and ab:
a + b = (16 + 8√5) + (16 - 8√5)= 32ab = (16 + 8√5)(16 - 8√5)= 256 - 64(5)= 256 - 320= -64
Now, substitute these values into the formula:
∛(16 + 8√5) + ∛(16 - 8√5)= ∛(32 - 64)= ∛(-32)= -2
Therefore, the simplified expression is -2.
The given expression can be simplified by using the formula for the sum of two cube roots:
∛(a) + ∛(b) = ∛(a+b+3√(ab))
In this case, a = 16 + 8√5 and b = 16 - 8√5.
Now, let's find the value of a + b and ab:
a + b = (16 + 8√5) + (16 - 8√5)
= 32
ab = (16 + 8√5)(16 - 8√5)
= 256 - 64(5)
= 256 - 320
= -64
Now, substitute these values into the formula:
∛(16 + 8√5) + ∛(16 - 8√5)
= ∛(32 - 64)
= ∛(-32)
= -2
Therefore, the simplified expression is -2.