Является ли числовая последовательность, заданная формулой an=2n-2, арифметической прогрессией?

5 Июн 2019 в 19:47
186 +1
1
Ответы
1

Для того чтобы проверить, является ли данная числовая последовательность арифметической прогрессией, нужно проверить, выполняется ли условие равенства разности любых двух соседних членов:

an+1 - an = const

Подставим формулу an=2n-2 в это условие:

(2(n+1)-2) - (2n-2) = 2(n+1) - 2 - 2n + 2 = 2n + 2 - 2 - 2n + 2 = 2

Получается, что разность двух соседних членов равна 2, что не является постоянной величиной. Следовательно, данная числовая последовательность не является арифметической прогрессией.

21 Апр в 01:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир