Итак, обозначим за х цену одного карандаша и за у - цену одной тетради.Из условия задачи у находим два уравнения:
4x + 3y = 34 (уравнение 1)2x + 2y = 20 (уравнение 2)
Домножим второе уравнение на 2:4x + 4y = 40
Вычтем из него первое уравнение:4y - 3y = 40 - 34y = 6
Подставляем найденное значение у в уравнение 2:2x + 2*6 = 202x + 12 = 202x = 20 - 122x = 8x = 4
Таким образом, один карандаш стоит 4 рубля, а одна тетрадь - 6 рублей.
Теперь найдем стоимость 8 карандашей и 7 тетрадей:84 + 76 = 32 + 42 = 74
Ответ: 8 карандашей и 7 тетрадей стоят 74 рубля.
Итак, обозначим за х цену одного карандаша и за у - цену одной тетради.
Из условия задачи у находим два уравнения:
4x + 3y = 34 (уравнение 1)
2x + 2y = 20 (уравнение 2)
Домножим второе уравнение на 2:
4x + 4y = 40
Вычтем из него первое уравнение:
4y - 3y = 40 - 34
y = 6
Подставляем найденное значение у в уравнение 2:
2x + 2*6 = 20
2x + 12 = 20
2x = 20 - 12
2x = 8
x = 4
Таким образом, один карандаш стоит 4 рубля, а одна тетрадь - 6 рублей.
Теперь найдем стоимость 8 карандашей и 7 тетрадей:
84 + 76 = 32 + 42 = 74
Ответ: 8 карандашей и 7 тетрадей стоят 74 рубля.