Для решения уравнений необходимо следовать определенным шагам и выполнять определенные действия. Давайте рассмотрим несколько примеров и прокомментируем их по компонентам действий.
Пример уравнения: 2x + 5 = 11
Шаг 1: Вычитаем 5 из обеих сторон уравнения: 2x = 6
Шаг 2: Делим обе стороны на 2 для получения значения x: x = 3
Комментарий: Для решения этого уравнения мы сначала избавились от константы, вычитая 5 из обеих сторон. Затем мы изолировали переменную x, поделив обе стороны на коэффициент перед x.
Шаг 2: Делим обе стороны на 3 для нахождения значения y: y = 5
Комментарий: Здесь мы сначала избавились от константы, прибавив 7 к обеим сторонам уравнения. Затем мы изолировали переменную y, поделив обе стороны на коэффициент перед y.
Пример уравнения: 4z/2 = 6
Шаг 1: Упрощаем левую часть уравнения: 2z = 6
Шаг 2: Делим обе стороны на 2 для нахождения значения z: z = 3
Комментарий: Здесь мы сначала упростили выражение в левой части уравнения, разделив 4z на 2. Затем мы изолировали переменную z, поделив обе стороны на 2.
Важно следовать этим шагам и быть внимательными при выполнении арифметических операций, чтобы правильно решить уравнения.
Для решения уравнений необходимо следовать определенным шагам и выполнять определенные действия. Давайте рассмотрим несколько примеров и прокомментируем их по компонентам действий.
Пример уравнения: 2x + 5 = 11Шаг 1: Вычитаем 5 из обеих сторон уравнения:
2x = 6
Шаг 2: Делим обе стороны на 2 для получения значения x:
x = 3
Комментарий: Для решения этого уравнения мы сначала избавились от константы, вычитая 5 из обеих сторон. Затем мы изолировали переменную x, поделив обе стороны на коэффициент перед x.
Пример уравнения: 3y - 7 = 8Шаг 1: Прибавляем 7 к обеим сторонам уравнения:
3y = 15
Шаг 2: Делим обе стороны на 3 для нахождения значения y:
y = 5
Комментарий: Здесь мы сначала избавились от константы, прибавив 7 к обеим сторонам уравнения. Затем мы изолировали переменную y, поделив обе стороны на коэффициент перед y.
Пример уравнения: 4z/2 = 6Шаг 1: Упрощаем левую часть уравнения:
2z = 6
Шаг 2: Делим обе стороны на 2 для нахождения значения z:
z = 3
Комментарий: Здесь мы сначала упростили выражение в левой части уравнения, разделив 4z на 2. Затем мы изолировали переменную z, поделив обе стороны на 2.
Важно следовать этим шагам и быть внимательными при выполнении арифметических операций, чтобы правильно решить уравнения.