=(4c^2 - 5)(5 + 4c^2) (3p - 1)^2 (3 + 2q^2)^2
Expanding the terms:
= (20c^2 + 16c^4 - 25 - 20c^2) (9p^2 - 6p + 1) (9 + 12q^2 + 4q^4)
= (16c^4 - 25) (9p^2 - 6p + 1) (9 + 12q^2 + 4q^4)
Multiplying the polynomial terms:
= 144c^4p^2 - 96c^4p + 16c^4 + 216c^4p^2 - 144c^4p + 24c^4 + 81p^2 - 54p + 9 - 135q^2 - 180c^4q^2 + 540q^4 - 80c^4q^4
= 16c^4(360p^2 - 240p + 40) + 9(5p^2 - 3p + 1) - 135q^2(1 + 4c^2) + 540q^4(1 - 2c^2)
Therefore, the expanded form of the expression (4c^2 - 5)(5 + 4c^2) (3p - 1)^2 (3 + 2q^2)^2 is:
16c^4(360p^2 - 240p + 40) + 9(5p^2 - 3p + 1) - 135q^2(1 + 4c^2) + 540q^4(1 - 2c^2)
=(4c^2 - 5)(5 + 4c^2) (3p - 1)^2 (3 + 2q^2)^2
Expanding the terms:
= (20c^2 + 16c^4 - 25 - 20c^2) (9p^2 - 6p + 1) (9 + 12q^2 + 4q^4)
= (16c^4 - 25) (9p^2 - 6p + 1) (9 + 12q^2 + 4q^4)
Multiplying the polynomial terms:
= 144c^4p^2 - 96c^4p + 16c^4 + 216c^4p^2 - 144c^4p + 24c^4 + 81p^2 - 54p + 9 - 135q^2 - 180c^4q^2 + 540q^4 - 80c^4q^4
= 16c^4(360p^2 - 240p + 40) + 9(5p^2 - 3p + 1) - 135q^2(1 + 4c^2) + 540q^4(1 - 2c^2)
Therefore, the expanded form of the expression (4c^2 - 5)(5 + 4c^2) (3p - 1)^2 (3 + 2q^2)^2 is:
16c^4(360p^2 - 240p + 40) + 9(5p^2 - 3p + 1) - 135q^2(1 + 4c^2) + 540q^4(1 - 2c^2)