To simplify the expression, we can first rewrite it in terms of common bases:
515^(x) - 35^(x+1) - 3^(x) + 3= 5(35)^(x) - 355^(x) - 3^(x) + 3= 53^(x+1) - 155^(x) - 3^(x) + 3
Now we can further simplify by factorizing common terms:
= 153^(x) - 155^(x) - 3^(x) + 3= 15[3^(x) - 5^(x)] - 3^(x) + 3= 15(3^(x) - 5^(x)) - (3^(x) - 3)
Therefore, the simplified expression is:
15*(3^(x) - 5^(x)) - (3^(x) - 3)
To simplify the expression, we can first rewrite it in terms of common bases:
515^(x) - 35^(x+1) - 3^(x) + 3
= 5(35)^(x) - 355^(x) - 3^(x) + 3
= 53^(x+1) - 155^(x) - 3^(x) + 3
Now we can further simplify by factorizing common terms:
= 153^(x) - 155^(x) - 3^(x) + 3
= 15[3^(x) - 5^(x)] - 3^(x) + 3
= 15(3^(x) - 5^(x)) - (3^(x) - 3)
Therefore, the simplified expression is:
15*(3^(x) - 5^(x)) - (3^(x) - 3)