Given function is f(x) = -4cos(x) + 2/sin^2(x)
To simplify the expression, we have to rewrite the terms using trigonometric identities.
Using the identity: sin^2(x) + cos^2(x) = 1
We can rewrite the function f(x) as:f(x) = -4cos(x) + 2/(1 - cos^2(x))
Now to simplify further, we need to express cos^2(x) in terms of sin(x).
Using the same trigonometric identity: sin^2(x) = 1 - cos^2(x)
We get: cos^2(x) = 1 - sin^2(x)
Substitute this expression back into the function f(x):f(x) = -4cos(x) + 2/sin^2(x)
f(x) = -4cos(x) + 2/(1 - sin^2(x))
f(x) = -4cos(x) + 2/cos^2(x)
Therefore, the simplified expression of f(x) is:f(x) = -4cos(x) + 2/cos^2(x)
Given function is f(x) = -4cos(x) + 2/sin^2(x)
To simplify the expression, we have to rewrite the terms using trigonometric identities.
Using the identity: sin^2(x) + cos^2(x) = 1
We can rewrite the function f(x) as:
f(x) = -4cos(x) + 2/(1 - cos^2(x))
Now to simplify further, we need to express cos^2(x) in terms of sin(x).
Using the same trigonometric identity: sin^2(x) = 1 - cos^2(x)
We get: cos^2(x) = 1 - sin^2(x)
Substitute this expression back into the function f(x):
f(x) = -4cos(x) + 2/sin^2(x)
f(x) = -4cos(x) + 2/(1 - sin^2(x))
f(x) = -4cos(x) + 2/cos^2(x)
Therefore, the simplified expression of f(x) is:
f(x) = -4cos(x) + 2/cos^2(x)