Да би се решило ово урачуење, прво ћемо раскрити заграде коришћењем својства множења:
(-5x + 3)(-x + 6) = 0(-5x)(-x) + (-5x)(6) + (3)(-x) + (3)(6) = 05x^2 - 30x - 3x + 18 = 05x^2 - 33x + 18 = 0
Затим ћемо факторизовати ово квадратно урачуење:
(5x - 2)(x - 9) = 0
Сада ћемо поставити два израза на левој страни једнаке нули и решити за x:
5x - 2 = 05x = 2x = 2/5
x - 9 = 0x = 9
Дакле, решења урачуења су x = 2/5 и x = 9.
Да би се решило ово урачуење, прво ћемо раскрити заграде коришћењем својства множења:
(-5x + 3)(-x + 6) = 0
(-5x)(-x) + (-5x)(6) + (3)(-x) + (3)(6) = 0
5x^2 - 30x - 3x + 18 = 0
5x^2 - 33x + 18 = 0
Затим ћемо факторизовати ово квадратно урачуење:
(5x - 2)(x - 9) = 0
Сада ћемо поставити два израза на левој страни једнаке нули и решити за x:
5x - 2 = 0
5x = 2
x = 2/5
x - 9 = 0
x = 9
Дакле, решења урачуења су x = 2/5 и x = 9.