Заплата сотрудника составляла 6000р . Зарплату увеличили на несколтко процентов , потом новую зарплату увеличили еще на столько же процентов. Получилось 7260 р. Определите, на сколько процентов увеличилась зарплата в первый раз.
Пусть x - процент увеличения зарплаты в первый раз, тогда после первого увеличения зарплата стала 6000(1+x/100). После второго увеличения зарплата стала (6000(1+x/100))*(1+x/100) = 7260.
Отсюда получаем уравнение: 6000(1+x/100)(1+x/100) = 7260 Раскрываем скобки: 6000(1+2x/100+x^2/10000) = 7260 Упрощаем: 6000+120x+6x^2=7260 Получаем квадратное уравнение: 6x^2+120x-1260=0 Делим обе части на 6: x^2+20x-210=0 Формула дискриминанта: D=20^2-41*(-210)=400+840=1240
Пусть x - процент увеличения зарплаты в первый раз, тогда после первого увеличения зарплата стала 6000(1+x/100). После второго увеличения зарплата стала (6000(1+x/100))*(1+x/100) = 7260.
Отсюда получаем уравнение: 6000(1+x/100)(1+x/100) = 7260
Раскрываем скобки: 6000(1+2x/100+x^2/10000) = 7260
Упрощаем: 6000+120x+6x^2=7260
Получаем квадратное уравнение: 6x^2+120x-1260=0
Делим обе части на 6: x^2+20x-210=0
Формула дискриминанта: D=20^2-41*(-210)=400+840=1240
Находим корни уравнения: x=(-20±√1240)/2=-10±√310≈-10±17.62
Так как процент не может быть отрицательным, то x≈7.62%
Зарплата увеличилась на 7,62% в первый раз.