To simplify the expression, we can use the trigonometric identities:
Given expression: (sin^2 17 - cos^2 17)/cos 34
= (sin^2 17 - cos^2 17)/(cos 34)
= [(sin^2 17 + cos^2 17) - 2cos^2 17]/cos 34
= [1 - 2cos^2 17]/cos 34
= [(1 - cos^2 17) - cos^2 17]/cos 34
= [sin^2 17 - cos^2 17]/cos 34
= (-cos^2 17 - cos^2 17)/cos 34
= -2cos^2 17/cos 34
Therefore, the simplified expression is -2cos 17.
To simplify the expression, we can use the trigonometric identities:
sin^2θ + cos^2θ = 1sin(2θ) = 2sinθcosθGiven expression: (sin^2 17 - cos^2 17)/cos 34
= (sin^2 17 - cos^2 17)/(cos 34)
= [(sin^2 17 + cos^2 17) - 2cos^2 17]/cos 34
= [1 - 2cos^2 17]/cos 34
= [(1 - cos^2 17) - cos^2 17]/cos 34
= [sin^2 17 - cos^2 17]/cos 34
= (-cos^2 17 - cos^2 17)/cos 34
= -2cos^2 17/cos 34
Therefore, the simplified expression is -2cos 17.