To simplify this expression, we need to use the trigonometric identity:
cos (A - B) = cos A cos B + sin A sin B
Using this identity, we can rewrite the expression as:
cos 68 - cos 22 / sin 68 - sin 22= (cos 68 cos 22 + sin 68 sin 22) / (sin 68 - sin 22)
= (cos (68 - 22)) / (sin 68 - sin 22)
= (cos 46) / (sin 68 - sin 22)
Since cos 46 is a constant value, we can further simplify the expression by finding the values of sin 68 and sin 22:
sin 68 = sin (90 - 22) = cos 22 = 0.927sin 22 = sin 22 = 0.374
Now we can substitute these values back into the expression:
= cos 46 / (0.927 - 0.374)
= cos 46 / 0.553
= 0.718 / 0.553
= 1.301
Therefore, the value of cos 68 - cos 22 / sin 68 - sin 22 is approximately 1.301.
To simplify this expression, we need to use the trigonometric identity:
cos (A - B) = cos A cos B + sin A sin B
Using this identity, we can rewrite the expression as:
cos 68 - cos 22 / sin 68 - sin 22
= (cos 68 cos 22 + sin 68 sin 22) / (sin 68 - sin 22)
= (cos (68 - 22)) / (sin 68 - sin 22)
= (cos 46) / (sin 68 - sin 22)
Since cos 46 is a constant value, we can further simplify the expression by finding the values of sin 68 and sin 22:
sin 68 = sin (90 - 22) = cos 22 = 0.927
sin 22 = sin 22 = 0.374
Now we can substitute these values back into the expression:
= cos 46 / (0.927 - 0.374)
= cos 46 / 0.553
= 0.718 / 0.553
= 1.301
Therefore, the value of cos 68 - cos 22 / sin 68 - sin 22 is approximately 1.301.