Найти интеграл:
[tex]\int\limits^._. {sin(}x^{4}+2)x^{3} \, dx[/tex]
*интеграл неопределённый

30 Авг 2019 в 04:43
129 +1
1
Ответы
1

Для нахождения данного интеграла воспользуемся методом замены переменной. Проведем замену u = x^4 + 2, тогда du = 4x^3 dx. Подставляем замену в исходный интеграл:

∫sin(u) x^3 dx = 1/4 ∫sin(u) du,

Интеграл от sin(u) равен -cos(u), поэтому:

1/4 ∫sin(u) du = -1/4 cos(u) + C,

Где C - произвольная постоянная. Подставляем обратно u = x^4 + 2:

-1/4 * cos(x^4 + 2) + C.

Таким образом, интеграл ∫sin(x^4 + 2) x^3 dx равен -1/4 cos(x^4 + 2) + C.

20 Апр в 12:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир