f'(x) = d/dx (cos(x)/3) = -sin(x)/3
f(0) = cos(0)/3 = 1/3
f'(0) = -sin(0)/3 = 0/3 = 0
Итак, f(0) = 1/3, f'(0) = 0.
f'(x) = d/dx (cos(x)/3) = -sin(x)/3
Найдем f(0):f(0) = cos(0)/3 = 1/3
Найдем f'(0):f'(0) = -sin(0)/3 = 0/3 = 0
Итак, f(0) = 1/3, f'(0) = 0.