Данное уравнение состоит из модулей, поэтому нужно рассмотреть все возможные случаи.
t^2 - 9 >= 0t^2 >= 9t >= 3 или t <= -3
Не подходит ни одно значение t для данного случая.
t^2 - 9 < 0t^2 < 9-3 < t < 3
t удовлетворяет обоим неравенствам: -3 < t < -2
-t^2 + 9 < 0t^2 > 9t > 3 или t < -3
Таким образом, решение уравнения |t^2 - 4| + |t^2 - 9| = 13: t = -3.
Данное уравнение состоит из модулей, поэтому нужно рассмотреть все возможные случаи.
Первый модуль положителен, второй также положителен:t^2 - 4 >= 0
t^2 >= 4
t >= 2 или t <= -2
t^2 - 9 >= 0
t^2 >= 9
t >= 3 или t <= -3
Не подходит ни одно значение t для данного случая.
Первый модуль положителен, второй отрицателен:t^2 - 4 >= 0
t^2 >= 4
t >= 2 или t <= -2
t^2 - 9 < 0
t^2 < 9
-3 < t < 3
t удовлетворяет обоим неравенствам: -3 < t < -2
Первый модуль отрицателен, второй положителен:-t^2 + 4 >= 0
t^2 <= 4
t <= 2 или t >= -2
t^2 - 9 >= 0
t^2 >= 9
t >= 3 или t <= -3
Не подходит ни одно значение t для данного случая.
Первый модуль отрицателен, второй также отрицателен:-t^2 + 4 >= 0
t^2 <= 4
t <= 2 или t >= -2
-t^2 + 9 < 0
t^2 > 9
t > 3 или t < -3
Не подходит ни одно значение t для данного случая.
Таким образом, решение уравнения |t^2 - 4| + |t^2 - 9| = 13: t = -3.