1) Expand both sides of the equation first:
(4x-1)^2 = 16x^2 - 8x + 1(5x+2)^2 = 25x^2 + 20x + 4(8x-7)(8x+7) = 64x^2 - 4928(6-x) = 168 - 28x
Now, substitute these expanded forms back into the equation:
(16x^2 - 8x + 1) - (25x^2 + 20x + 4) + (64x^2 - 49) = 168 - 28x16x^2 - 8x + 1 - 25x^2 - 20x - 4 + 64x^2 - 49 = 168 - 28x55x^2 - 28x - 52 = 168 - 28x55x^2 - 28x - 52 - 168 + 28x = 055x^2 - 220 = 05(11x^2 - 44) = 011x^2 - 44 = 011x^2 = 44x^2 = 4x = ±2
Therefore, the solutions for x are x = 2 and x = -2.
2) Expand both sides of the equation first:
(2x-7)^2 = 4x^2 - 28x + 49(3x-5)^2 = 9x^2 - 30x + 25(4x-9)(9+4x) = 36x^2 + 11x - 812(64-29x) = 128 - 58x
(4x^2 - 28x + 49) + (9x^2 - 30x + 25) - 2(64 - 29x) = 36x^2 + 11x - 814x^2 - 28x + 49 + 9x^2 - 30x + 25 - 128 + 58x = 36x^2 + 11x - 8113x^2 - 58x + 74 - 128 + 58x = 36x^2 + 11x - 8113x^2 - 54 = 36x^2 + 11x - 81-23x^2 - 11x + 135 = 023x^2 + 11x - 135 = 023x^2 + 45x - 34x - 135 = 023x(x + 5) - 34(x + 5) = 0(23x - 34)(x + 5) = 0
x = 34/23 or x = -5
Therefore, the solutions for x are x = 34/23 and x = -5.
1) Expand both sides of the equation first:
(4x-1)^2 = 16x^2 - 8x + 1
(5x+2)^2 = 25x^2 + 20x + 4
(8x-7)(8x+7) = 64x^2 - 49
28(6-x) = 168 - 28x
Now, substitute these expanded forms back into the equation:
(16x^2 - 8x + 1) - (25x^2 + 20x + 4) + (64x^2 - 49) = 168 - 28x
16x^2 - 8x + 1 - 25x^2 - 20x - 4 + 64x^2 - 49 = 168 - 28x
55x^2 - 28x - 52 = 168 - 28x
55x^2 - 28x - 52 - 168 + 28x = 0
55x^2 - 220 = 0
5(11x^2 - 44) = 0
11x^2 - 44 = 0
11x^2 = 44
x^2 = 4
x = ±2
Therefore, the solutions for x are x = 2 and x = -2.
2) Expand both sides of the equation first:
(2x-7)^2 = 4x^2 - 28x + 49
(3x-5)^2 = 9x^2 - 30x + 25
(4x-9)(9+4x) = 36x^2 + 11x - 81
2(64-29x) = 128 - 58x
Now, substitute these expanded forms back into the equation:
(4x^2 - 28x + 49) + (9x^2 - 30x + 25) - 2(64 - 29x) = 36x^2 + 11x - 81
4x^2 - 28x + 49 + 9x^2 - 30x + 25 - 128 + 58x = 36x^2 + 11x - 81
13x^2 - 58x + 74 - 128 + 58x = 36x^2 + 11x - 81
13x^2 - 54 = 36x^2 + 11x - 81
-23x^2 - 11x + 135 = 0
23x^2 + 11x - 135 = 0
23x^2 + 45x - 34x - 135 = 0
23x(x + 5) - 34(x + 5) = 0
(23x - 34)(x + 5) = 0
x = 34/23 or x = -5
Therefore, the solutions for x are x = 34/23 and x = -5.