To simplify this expression, we can use the formula for changing the base of a logarithm:
log_a b = log_c b / log_c a
Therefore, we can rewrite the expression as:
log3 32 / log3 2 + log7 27 / log7 3= log 32 / log 2 + log 27 / log 3= log2^5 / log2 + log3^3 / log3= 5 / 1 + 3 / 1= 5 + 3= 8
Therefore, log3 32 / log3 2 + log7 27 / log7 3 = 8.
To simplify this expression, we can use the formula for changing the base of a logarithm:
log_a b = log_c b / log_c a
Therefore, we can rewrite the expression as:
log3 32 / log3 2 + log7 27 / log7 3
= log 32 / log 2 + log 27 / log 3
= log2^5 / log2 + log3^3 / log3
= 5 / 1 + 3 / 1
= 5 + 3
= 8
Therefore, log3 32 / log3 2 + log7 27 / log7 3 = 8.