To simplify the given expression, we need to find a common denominator for the two fractions. The common denominator for [tex]2x-5[/tex] and [tex]2-3x[/tex] is tex(2-3x)[/tex].
So, we rewrite the expression with the common denominator:
[tex]\frac{(2x-9)(2-3x)}{(2x-5)(2-3x)} - \frac{3x(2x-5)}{(2x-5)(2-3x)}[/tex]
Expanding the numerators, we get:
[tex]\frac{4x-6x^2-18+27x}{(2x-5)(2-3x)} - \frac{6x^2-15x}{(2x-5)(2-3x)}[/tex]
Combining like terms:
[tex]\frac{31x-18}{(2x-5)(2-3x)} - \frac{6x^2-15x}{(2x-5)(2-3x)}[/tex]
Now, we combine the fractions:
[tex]\frac{(31x-18) - (6x^2-15x)}{(2x-5)(2-3x)}[/tex]
Simplifying further:
[tex]\frac{31x-18 - 6x^2 + 15x}{(2x-5)(2-3x)}[/tex]
[tex]\frac{-6x^2 + 46x - 18}{(2x-5)(2-3x)}[/tex]
Thus, the simplified expression is [tex]\frac{-6x^2 + 46x - 18}{(2x-5)(2-3x)}[/tex].
To simplify the given expression, we need to find a common denominator for the two fractions. The common denominator for [tex]2x-5[/tex] and [tex]2-3x[/tex] is tex(2-3x)[/tex].
So, we rewrite the expression with the common denominator:
[tex]\frac{(2x-9)(2-3x)}{(2x-5)(2-3x)} - \frac{3x(2x-5)}{(2x-5)(2-3x)}[/tex]
Expanding the numerators, we get:
[tex]\frac{4x-6x^2-18+27x}{(2x-5)(2-3x)} - \frac{6x^2-15x}{(2x-5)(2-3x)}[/tex]
Combining like terms:
[tex]\frac{31x-18}{(2x-5)(2-3x)} - \frac{6x^2-15x}{(2x-5)(2-3x)}[/tex]
Now, we combine the fractions:
[tex]\frac{(31x-18) - (6x^2-15x)}{(2x-5)(2-3x)}[/tex]
Simplifying further:
[tex]\frac{31x-18 - 6x^2 + 15x}{(2x-5)(2-3x)}[/tex]
[tex]\frac{-6x^2 + 46x - 18}{(2x-5)(2-3x)}[/tex]
Thus, the simplified expression is [tex]\frac{-6x^2 + 46x - 18}{(2x-5)(2-3x)}[/tex].