Для нахождения координат точки пересечения графиков функций y=6x^2-2 и y=11x нужно приравнять две функции между собой и решить полученное уравнение.
6x^2-2 = 11x
6x^2 - 11x - 2 = 0
Теперь найдем корни квадратного уравнения:
D = (-11)^2 - 46(-2) = 121 + 48 = 169
x1 = (11 + √169) / 12 = 22 / 12 = 11 / 6
x2 = (11 - √169) / 12 = 0 / 12 = 0
Таким образом, точка пересечения графиков функций это точка (0, 0) и (11/6, 11/6).
Для нахождения координат точки пересечения графиков функций y=6x^2-2 и y=11x нужно приравнять две функции между собой и решить полученное уравнение.
6x^2-2 = 11x
6x^2 - 11x - 2 = 0
Теперь найдем корни квадратного уравнения:
D = (-11)^2 - 46(-2) = 121 + 48 = 169
x1 = (11 + √169) / 12 = 22 / 12 = 11 / 6
x2 = (11 - √169) / 12 = 0 / 12 = 0
Таким образом, точка пересечения графиков функций это точка (0, 0) и (11/6, 11/6).