To solve this equation, we first distribute the terms on the left side:
(x-1)(x-3)(x+2)(x+6) = 72x^2=> (x^2 - 3x - x + 3)(x^2 + 6x + 2x + 12) = 72x^2=> (x^2 - 4x + 3)(x^2 + 8x + 12) = 72x^2=> (x^2 + 8x - 4x - 32)(x^2 + 8x + 12) = 72x^2=> (x^2 + 4x - 32)(x^2 + 8x + 12) = 72x^2
Now, we expand the left side further:
=> x^4 + 8x^3 + 12x^2 + 4x^3 + 32x^2 + 48x - 32x^2 - 256x - 384 = 72x^2=> x^4 + 12x^3 + 12x^2 + 48x - 256x - 384 = 72x^2=> x^4 + 12x^3 - 60x^2 - 208x - 384 = 72x^2=> x^4 + 12x^3 - 132x^2 - 208x - 384 = 0
Now that we have the polynomial equation set equal to zero, we can try factoring it further or using another method to solve for x.
To solve this equation, we first distribute the terms on the left side:
(x-1)(x-3)(x+2)(x+6) = 72x^2
=> (x^2 - 3x - x + 3)(x^2 + 6x + 2x + 12) = 72x^2
=> (x^2 - 4x + 3)(x^2 + 8x + 12) = 72x^2
=> (x^2 + 8x - 4x - 32)(x^2 + 8x + 12) = 72x^2
=> (x^2 + 4x - 32)(x^2 + 8x + 12) = 72x^2
Now, we expand the left side further:
=> x^4 + 8x^3 + 12x^2 + 4x^3 + 32x^2 + 48x - 32x^2 - 256x - 384 = 72x^2
=> x^4 + 12x^3 + 12x^2 + 48x - 256x - 384 = 72x^2
=> x^4 + 12x^3 - 60x^2 - 208x - 384 = 72x^2
=> x^4 + 12x^3 - 132x^2 - 208x - 384 = 0
Now that we have the polynomial equation set equal to zero, we can try factoring it further or using another method to solve for x.