The expression can be simplified using trigonometric identities.
sin(2a) = 2sin(a)cos(a)tan(a) = sin(a)/cos(a)cot(a) = cos(a)/sin(a)
Substitute these identities into the expression:
2sin(a)cos(a) - (sin(a)/cos(a)) * (cos(a)/sin(a))
Simplify further:
2sin(a)cos(a) - sin^2(a)/cos(a)
= 2sin(a)cos(a) - sin^2(a)/cos(a)
= sin(a)(2cos(a) - sin(a))/cos(a)
Therefore, sin(2a) - tan(a)*cot(a) simplifies to sin(a)(2cos(a) - sin(a))/cos(a).
The expression can be simplified using trigonometric identities.
sin(2a) = 2sin(a)cos(a)
tan(a) = sin(a)/cos(a)
cot(a) = cos(a)/sin(a)
Substitute these identities into the expression:
2sin(a)cos(a) - (sin(a)/cos(a)) * (cos(a)/sin(a))
Simplify further:
2sin(a)cos(a) - sin^2(a)/cos(a)
= 2sin(a)cos(a) - sin^2(a)/cos(a)
= sin(a)(2cos(a) - sin(a))/cos(a)
Therefore, sin(2a) - tan(a)*cot(a) simplifies to sin(a)(2cos(a) - sin(a))/cos(a).