Докажите, что функция y=f(x) четная.
[tex]a) f(x) =7cos4x+3 x^{2} \\\\b) f (x) = \frac{x^{2}-x}{x+2} - \frac{x^{2}+x}{x-2}[/tex]

12 Сен 2019 в 23:42
182 +1
0
Ответы
1

a) Докажем, что функция f(x) = 7cos4x + 3x^2 является четной. Функция является четной, если f(x) = f(-x) для всех x из области определения функции.

Подставим -x вместо x в функцию f(x):
f(-x) = 7cos4(-x) + 3*(-x)^2 = 7cos(-4x) + 3x^2 = 7cos4x + 3x^2

Таким образом, f(-x) = f(x) для всех x, что означает, что функция является четной.

б) Докажем, что функция f(x) = (x^2-x)/(x+2) - (x^2+x)/(x-2) не является четной. Функция является четной, если f(x) = f(-x) для всех x из области определения функции.

Подставим -x вместо x в функцию f(x):
f(-x) = ((-x)^2-(-x))/(-x+2) - ((-x)^2-(-x))/(-x-2) = (x^2+x)/(2-x) - (x^2-x)/(x+2)

f(x) ≠ f(-x), следовательно, функция не является четной.

20 Апр 2024 в 01:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 424 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир