15 Сен 2019 в 18:43
189 +1
0
Ответы
1

Упрощаем выражения внутри логарифмов:

log 8/27 = log(2^3/3^3) = log(2^3) - log(3^3) = 3log(2) - 3log(3) = 3log(2) - 3log(3)
log 81/16 = log(3^4/2^4) = log(3^4) - log(2^4) = 4log(3) - 4log(2) = 4log(3) - 4log(2)

Теперь выражаем логарифм разности через логарифмы простых выражений:

log 8/27 - log 81/16 = 3log(2) - 3log(3) - (4log(3) - 4log(2))
= 3log(2) - 3log(3) - 4log(3) + 4log(2)
= 3log(2) + 4log(2) - 3log(3) - 4log(3)
= 7log(2) - 7log(3)

Подлогарифмическое выражение степени 7:

= log(2^7) - log(3^7)
= log(128) - log(2187)

Таким образом, log 8/27 81/16 = log(128) - log(2187) = log(128/2187) = log(16/27)

Это итоговое упрощенное выражение для данного логарифма.

19 Апр 2024 в 23:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 95 839 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир