To simplify this expression, we will first evaluate the exponents:
5^0 = 127^-7 = 1/27^7125^-6 = 1/125^65^1 = 5
Now we substitute the values back into the expression:
1 (1/27^7) / (1/125^6) 5
Now, simplify the division of fractions:
1 (1/27^7) (125^6) * 5
Next, simplify the exponents:
1 1/(3^7) 5^4 * 5
Now, compute the result:
1 1/(2187) 625 5= (625/2187) 5= 3125/2187
Therefore, the simplified result of the expression 5^0 × 27^-7 / 125^-6 × 5^1 is 3125/2187.
To simplify this expression, we will first evaluate the exponents:
5^0 = 1
27^-7 = 1/27^7
125^-6 = 1/125^6
5^1 = 5
Now we substitute the values back into the expression:
1 (1/27^7) / (1/125^6) 5
Now, simplify the division of fractions:
1 (1/27^7) (125^6) * 5
Next, simplify the exponents:
1 1/(3^7) 5^4 * 5
Now, compute the result:
1 1/(2187) 625 5
= (625/2187) 5
= 3125/2187
Therefore, the simplified result of the expression 5^0 × 27^-7 / 125^-6 × 5^1 is 3125/2187.