To simplify the expression, we first need to square the complex number ( \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) ):
( \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^2 )
Using De Moivre's Theorem, we have:
( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} )
Thus,
( \left( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) )
To simplify the expression, we first need to square the complex number ( \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) ):
( \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^2 )
Using De Moivre's Theorem, we have:
( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} )
Thus,
( \left( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) )