В прямоугольном треугольнике длины всех сторон оказались целыми числами которые не все чётные Докажите что в этом треугольнике длина гипотенузы обязательно выражено нечётным числом

19 Сен 2019 в 19:43
533 +1
0
Ответы
1

Для того чтобы доказать это, рассмотрим возможные варианты длин сторон прямоугольного треугольника.

Пусть длины катетов равны a и b, где a < b. Тогда длина гипотенузы будет равна c.

Известно, что a, b и с - целые числа, причем не все четные.

По теореме Пифагора, имеем:
a^2 + b^2 = c^2

Поскольку и a и b нечетные числа, то a^2 и b^2 будут также нечетные числа (поскольку нечетное число, умноженное на нечетное число, всегда дает нечетное число).

Сумма двух нечетных чисел равна четному числу. Таким образом, с^2 (квадрат длины гипотенузы) будет четным числом.

Следовательно, само c будет нечетным числом, поскольку только нечетные числа дают нечетные квадраты. Таким образом, длина гипотенузы в этом треугольнике обязательно выражена нечетным числом.

19 Апр в 21:26
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 93 377 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир