21 Сен 2019 в 13:41
149 +1
0
Ответы
1

Для решения этого уравнения сначала приведем оба члена к одной степени:

3^(x-5) + 4^(x-5) = 91

Преобразуем 4^(x-5) в виде 2^(2(x-5)), так как 4 = 2^2:

3^(x-5) + 2^(2(x-5)) = 91

Теперь преобразуем 2^(2(x-5)) в виде (2^(x-5))^2:

3^(x-5) + (2^(x-5))^2 = 91

Теперь обозначим 2^(x-5) за у:

3^(x-5) + u^2 = 91

т.е.

3^(x-5) + u^2 = 91

3^(x-5) = 91 - u^2

Теперь запишем уравнение для u:

u^2 = 2^(x-5)
u = 2^(x-5)

Подставляем значение u обратно в наше уравнение:

3^(x-5) + (2^(x-5))^2 = 91

3^(x-5) + 2^(2(x-5)) = 91

3^(x-5) + 4^(x-5) = 91

91 = 91

Это уравнение верно при любом значении x, что означает, что у уравнения существует бесконечно много решений.

19 Апр в 20:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 93 277 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир