(x/x^2-14x+49) + (x+1/49-x^2)== x/(x-7)^2 + (x+1)/(7-x)= (x^2+x-(x^2-7x))/(x-7)^2= 8x/(x-7)^2
(y+6/4y+8) - (y+2/4y-8) + (5/y^2-4)== y+6/(4y+8) - y-2/(4y-8) + 5/(y+2)(y-2)= 8/(4y+8) - 2/(4y-8) + 5/(y+2)(y-2)= 2/(y+2) + 5/(y-2)
(6b^3+48b/b^3+64) - (3b^2/b^2-46+16)== (6b(b^2+8))/(b^3+64) - 3/(b-4) = (6b(b^2+8) - 3(b^3+64))/(b^3+64)= (6b^3 + 48b - 3b^3 - 192)/(b^3 + 64)= (3b^3 + 48b - 192)/(b^3+64)
(x/x^2-14x+49) + (x+1/49-x^2)=
= x/(x-7)^2 + (x+1)/(7-x)
= (x^2+x-(x^2-7x))/(x-7)^2
= 8x/(x-7)^2
(y+6/4y+8) - (y+2/4y-8) + (5/y^2-4)=
= y+6/(4y+8) - y-2/(4y-8) + 5/(y+2)(y-2)
= 8/(4y+8) - 2/(4y-8) + 5/(y+2)(y-2)
= 2/(y+2) + 5/(y-2)
(6b^3+48b/b^3+64) - (3b^2/b^2-46+16)=
= (6b(b^2+8))/(b^3+64) - 3/(b-4) = (6b(b^2+8) - 3(b^3+64))/(b^3+64)
= (6b^3 + 48b - 3b^3 - 192)/(b^3 + 64)
= (3b^3 + 48b - 192)/(b^3+64)