22 Сен 2019 в 13:41
122 +1
0
Ответы
1

Решение:

Рассмотрим два случая:

a) x^2 + x ≥ 2
b) x^2 + x ≤ -2

Для случая a) решим неравенство:
x^2 + x ≥ 2
x^2 + x - 2 ≥ 0
(x + 2)(x - 1) ≥ 0

Таким образом, получаем, что x ≤ -2 или x ≥ 1.

Для случая b) решим неравенство:
x^2 + x ≤ -2
x^2 + x + 2 ≤ 0

Это неравенство не имеет решений, так как дискриминант уравнения равен отрицательному числу.

Итак, решением исходного неравенства | x^2 + x | ≥ 2 является x ≤ -2 или x ≥ 1.

19 Апр в 20:17
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир