The expression can be simplified as follows:
sin(20°)sin(50°)sin(70°) / sin(80°)
Using the trigonometric identity:
sin(α)sin(β) = 1/2[cos(α-β) - cos(α+β)]
Letting α = 70° and β = 50°:
sin(70°)sin(50°) = 1/2[cos(70° - 50°) - cos(70° + 50°)] = 1/2[cos(20°) - cos(120°)] = 1/2[cos(20°) + 1/2]
Now we have:
(sin(20°)(1/2[cos(20°) + 1/2])) / sin(80°)
Using the double angle identity:
cos(2θ) = 2cos^2(θ) - 1
Let θ = 20°:
cos(40°) = 2cos^2(20°) - 1
Rearranging:
cos^2(20°) = (1 + cos(40°)) / 2
Substitute back to the expression:
(sin(20°)(1/2[cos(20°) + 1/2])) / sin(80°)= (sin(20°)(1/2[cos(20°) + 1/2])) / (2sin(40°)cos(40°))
= (1/2[sin(20°)cos(20°) + sin(20°)/2]) / (2sin(40°)cos(40°))
= (1/2[1/2(sin(40°)) + sin(20°)/2]) / (2sin(40°)cos(40°))
= [1/(4cos(40°)) + sin(20°)/(4cos(40°))] / (2sin(40°)cos(40°))
= [1/(4sin(50°)) + sin(20°)/(4sin(50°))] / (2sin(50°))
= [1 + 2sin(20°)] / (8sin(50°))
Now, you can calculate the final value using a calculator.
The expression can be simplified as follows:
sin(20°)sin(50°)sin(70°) / sin(80°)
Using the trigonometric identity:
sin(α)sin(β) = 1/2[cos(α-β) - cos(α+β)]
Letting α = 70° and β = 50°:
sin(70°)sin(50°) = 1/2[cos(70° - 50°) - cos(70° + 50°)] = 1/2[cos(20°) - cos(120°)] = 1/2[cos(20°) + 1/2]
Now we have:
(sin(20°)(1/2[cos(20°) + 1/2])) / sin(80°)
Using the double angle identity:
cos(2θ) = 2cos^2(θ) - 1
Let θ = 20°:
cos(40°) = 2cos^2(20°) - 1
Rearranging:
cos^2(20°) = (1 + cos(40°)) / 2
Substitute back to the expression:
(sin(20°)(1/2[cos(20°) + 1/2])) / sin(80°)
= (sin(20°)(1/2[cos(20°) + 1/2])) / (2sin(40°)cos(40°))
= (1/2[sin(20°)cos(20°) + sin(20°)/2]) / (2sin(40°)cos(40°))
= (1/2[1/2(sin(40°)) + sin(20°)/2]) / (2sin(40°)cos(40°))
= [1/(4cos(40°)) + sin(20°)/(4cos(40°))] / (2sin(40°)cos(40°))
= [1/(4sin(50°)) + sin(20°)/(4sin(50°))] / (2sin(50°))
= [1 + 2sin(20°)] / (8sin(50°))
Now, you can calculate the final value using a calculator.