Для того чтобы найти пятый член геометрической прогрессии, нам нужно найти знаменатель прогрессии, который вычисляется как отношение любого члена к предыдущему.
Для данной прогрессии: знаменатель = (-54) / 18 = -3
Теперь, чтобы найти пятый член, можно использовать формулу для нахождения члена прогрессии:
a[n] = a[1] * q^(n-1),
где a[n] - n-й член прогрессии, a[1] - первый член, q - знаменатель прогрессии, n - номер члена.
Для данной прогрессии: a[5] = 18 (-3)^(5-1) a[5] = 18 (-3)^4 a[5] = 18 * 81 a[5] = 1458
Для того чтобы найти пятый член геометрической прогрессии, нам нужно найти знаменатель прогрессии, который вычисляется как отношение любого члена к предыдущему.
Для данной прогрессии:
знаменатель = (-54) / 18 = -3
Теперь, чтобы найти пятый член, можно использовать формулу для нахождения члена прогрессии:
a[n] = a[1] * q^(n-1),
где a[n] - n-й член прогрессии, a[1] - первый член, q - знаменатель прогрессии, n - номер члена.
Для данной прогрессии:
a[5] = 18 (-3)^(5-1)
a[5] = 18 (-3)^4
a[5] = 18 * 81
a[5] = 1458
Пятый член геометрической прогрессии равен 1458.