Пусть у Алеши есть A рублей, а у Пети - Р рублей. Тогда по условию задачи уравнения выглядят следующим образом:
A + P = xA - P = y
Сложим оба уравнения:
A + P + A - P = x + y2A = x + y
Так как у Пети на y рублей меньше, чем у Алеши, то P = A - y
Заменим второе уравнение в системе:
A + A - y = x2A - y = x
Выразим A:
2A = x + yA = (x + y) / 2
Теперь найдем P:
P = A - yP = ((x + y) / 2) - yP = (x - y) / 2
Таким образом, у Пети есть (x - y) / 2 рублей.
Пусть у Алеши есть A рублей, а у Пети - Р рублей. Тогда по условию задачи уравнения выглядят следующим образом:
A + P = x
A - P = y
Сложим оба уравнения:
A + P + A - P = x + y
2A = x + y
Так как у Пети на y рублей меньше, чем у Алеши, то P = A - y
Заменим второе уравнение в системе:
A + A - y = x
2A - y = x
Выразим A:
2A = x + y
A = (x + y) / 2
Теперь найдем P:
P = A - y
P = ((x + y) / 2) - y
P = (x - y) / 2
Таким образом, у Пети есть (x - y) / 2 рублей.