2{3 sin60° + 4cos60°}
Using the trigonometric identity sin(theta) = cos(90 - theta), we have:
3sin(60°) + 4cos(60°) = 3sin(60°) + 4sin(30°)
Now, using the trigonometric identity sin(60°) = √3/2 and sin(30°) = 1/2, we can substitute these values in:
3(√3/2) + 4(1/2) = 3√3/2 + 2 = (3√3 + 4) / 2.
Therefore, 3sin60° + 4cos60° = (3√3 + 4) / 2.
2{3 sin60° + 4cos60°}
Using the trigonometric identity sin(theta) = cos(90 - theta), we have:
3sin(60°) + 4cos(60°) = 3sin(60°) + 4sin(30°)
Now, using the trigonometric identity sin(60°) = √3/2 and sin(30°) = 1/2, we can substitute these values in:
3(√3/2) + 4(1/2) = 3√3/2 + 2 = (3√3 + 4) / 2.
Therefore, 3sin60° + 4cos60° = (3√3 + 4) / 2.