sin(2°)cos(28) + sin(28°)cos(2°)
To find the values of sin(2°) and cos(28), we use a trigonometry identity: sin(a + b) = sin(a)cos(b) + cos(a)sin(b).
sin(2°) = sin(28° - 26°)= sin(28°)cos(26°) + cos(28°)sin(26°)
Similarly, we can find the values of sin(28) and cos(2) using the same identity.
cos(2°) = cos(28° - 26°)= cos(28°)cos(26°) - sin(28°)sin(26°)
Therefore, the expression sin(2°)cos(28) + sin(28°)cos(2°) can be rewritten as sin(28°)cos(26°)cos(28°) + cos(28°)sin(26°)cos(28°) + sin(28°)cos(26°) - sin(28°)sin(26°)cos(26°).
sin(2°)cos(28) + sin(28°)cos(2°)
To find the values of sin(2°) and cos(28), we use a trigonometry identity: sin(a + b) = sin(a)cos(b) + cos(a)sin(b).
sin(2°) = sin(28° - 26°)
= sin(28°)cos(26°) + cos(28°)sin(26°)
Similarly, we can find the values of sin(28) and cos(2) using the same identity.
cos(2°) = cos(28° - 26°)
= cos(28°)cos(26°) - sin(28°)sin(26°)
Therefore, the expression sin(2°)cos(28) + sin(28°)cos(2°) can be rewritten as sin(28°)cos(26°)cos(28°) + cos(28°)sin(26°)cos(28°) + sin(28°)cos(26°) - sin(28°)sin(26°)cos(26°).