а) x₁²x₂+x₁x₂² = x₁x₂(x₁+x₂) = x₁x₂*(-(-4/3)) = 4/3x₁x₂
б) x₂/x₁ + x₁/x₂ = (x₁² + x₂²)/x₁x₂ = ((x₁ + x₂)² - 2x₁x₂)/x₁x₂ = ((-(-4/3))² - 2(-1))/(-1) = (16/9 + 2)/(-1) = (16+18)/(-9) = 34/-9 = -34/9
в) x₁³ + x₂³ = (x₁ + x₂)(x₁² - x₁x₂ + x₂²) = (-(-4/3))((-4/3 + 2)/3) = -4/3(2/3) = -8/9
а) x₁²x₂+x₁x₂² = x₁x₂(x₁+x₂) = x₁x₂*(-(-4/3)) = 4/3x₁x₂
б) x₂/x₁ + x₁/x₂ = (x₁² + x₂²)/x₁x₂ = ((x₁ + x₂)² - 2x₁x₂)/x₁x₂ = ((-(-4/3))² - 2(-1))/(-1) = (16/9 + 2)/(-1) = (16+18)/(-9) = 34/-9 = -34/9
в) x₁³ + x₂³ = (x₁ + x₂)(x₁² - x₁x₂ + x₂²) = (-(-4/3))((-4/3 + 2)/3) = -4/3(2/3) = -8/9