(a-b)^2 - 2ab + 2a^2 - b^2
= a^2 - 2ab + b^2 - 2ab + 2a^2 - b^2= a^2 - 4ab + 2a^2= 3a^2 - 4ab
Now, we need to factor out 'a' from the expression a^2 - 4ab:
= a (3a - 4b)= a (3a - ab)
Therefore, we have proved that:
(a-b)^2 - 2ab + 2a^2 - b^2 = a (3a - ab)
(a-b)^2 - 2ab + 2a^2 - b^2
= a^2 - 2ab + b^2 - 2ab + 2a^2 - b^2
= a^2 - 4ab + 2a^2
= 3a^2 - 4ab
Now, we need to factor out 'a' from the expression a^2 - 4ab:
= a (3a - 4b)
= a (3a - ab)
Therefore, we have proved that:
(a-b)^2 - 2ab + 2a^2 - b^2 = a (3a - ab)