а)
(х-4)(4х+6)=(х-5)²
(х4х + х6 - 44х - 46) = (х^2 - 10х + 25)
4х^2 + 6х - 16х - 24 = х^2 - 10х + 25
4х^2 - 10х - 24 = х^2 - 10х + 25
3х^2 - 24 = 25
3х^2 = 49
х^2 = 49/3
х = ±√(49/3)
б)
(3х²-6х) : 2 = 4-2х
(3х^2 - 6х) / 2 = 4 - 2х
3х^2 - 6x = 8 - 4x
3х^2 + 4x - 8 = 0
x = (-4 ± √(4^2 - 43(-8))) / (2*3)
x = (-4 ± √(16 + 96)) / 6
x = (-4 ± √112) / 6
x = (-4 ± 4√7) / 6
x = (2 ± 2√7) / 3
г)
2х² - 2х + c = 0
Дискриминант D = b² - 4ac
D = (-2)² - 42c
D = 4 - 8c
Условие для одного корня: D = 0
4 - 8c = 0
8c = 4
c = 4/8
c = 0.5
д)
х² - х - 2 = 0
D = b² - 4ac
D = (-1)² - 41(-2)
D = 1 + 8
D = 9
x1 = (-(-1) + √D) / 2*1
x1 = (1 + 3) / 2
x1 = 4 / 2
x1 = 2
x2 = (-(-1) - √D) / 2*1
x2 = (1 - 3) / 2
x2 = -2 / 2
x2 = -1
1 / x1 + 1 / x2
= (x1 + x2) / (x1*x2)
= (2) / (-2)
= -1
x1x2 + x2x1
= 2*(-1)
= -2
а)
(х-4)(4х+6)=(х-5)²
(х4х + х6 - 44х - 46) = (х^2 - 10х + 25)
4х^2 + 6х - 16х - 24 = х^2 - 10х + 25
4х^2 - 10х - 24 = х^2 - 10х + 25
3х^2 - 24 = 25
3х^2 = 49
х^2 = 49/3
х = ±√(49/3)
б)
(3х²-6х) : 2 = 4-2х
(3х^2 - 6х) / 2 = 4 - 2х
3х^2 - 6x = 8 - 4x
3х^2 + 4x - 8 = 0
x = (-4 ± √(4^2 - 43(-8))) / (2*3)
x = (-4 ± √(16 + 96)) / 6
x = (-4 ± √112) / 6
x = (-4 ± 4√7) / 6
x = (2 ± 2√7) / 3
г)
2х² - 2х + c = 0
Дискриминант D = b² - 4ac
D = (-2)² - 42c
D = 4 - 8c
Условие для одного корня: D = 0
4 - 8c = 0
8c = 4
c = 4/8
c = 0.5
д)
х² - х - 2 = 0
D = b² - 4ac
D = (-1)² - 41(-2)
D = 1 + 8
D = 9
x1 = (-(-1) + √D) / 2*1
x1 = (1 + 3) / 2
x1 = 4 / 2
x1 = 2
x2 = (-(-1) - √D) / 2*1
x2 = (1 - 3) / 2
x2 = -2 / 2
x2 = -1
а)
1 / x1 + 1 / x2
= (x1 + x2) / (x1*x2)
= (2) / (-2)
= -1
б)
x1x2 + x2x1
= 2*(-1)
= -2