To solve this expression, we can simplify the numerator and the denominator separately before dividing them.
Numerator:(√22 - √2) √22= √22 √22 - √2 √22= 22 - 2√2 √22= 22 - 2√(222)= 22 - 2√44= 22 - 22√11= 22 - 4√11
Denominator:√11 - 11= √11 - √121= √11 - 11(Note: √121 = 11)
Now, let's put the simplified numerator and denominator back together:(22 - 4√11) / (√11 - 11)
To rationalize the denominator, we multiply both the numerator and denominator by the conjugate of the denominator:[(22 - 4√11) / (√11 - 11)] * [(√11 + 11) / (√11 + 11)]= [22√11 + 242 - 4(11)] / (11 - 121)= [22√11 + 242 - 44] / (-110)= [22√11 + 198] / (-110)
Therefore, the simplified expression is (22√11 + 198) / (-110).
To solve this expression, we can simplify the numerator and the denominator separately before dividing them.
Numerator:
(√22 - √2) √22
= √22 √22 - √2 √22
= 22 - 2√2 √22
= 22 - 2√(222)
= 22 - 2√44
= 22 - 22√11
= 22 - 4√11
Denominator:
√11 - 11
= √11 - √121
= √11 - 11
(Note: √121 = 11)
Now, let's put the simplified numerator and denominator back together:
(22 - 4√11) / (√11 - 11)
To rationalize the denominator, we multiply both the numerator and denominator by the conjugate of the denominator:
[(22 - 4√11) / (√11 - 11)] * [(√11 + 11) / (√11 + 11)]
= [22√11 + 242 - 4(11)] / (11 - 121)
= [22√11 + 242 - 44] / (-110)
= [22√11 + 198] / (-110)
Therefore, the simplified expression is (22√11 + 198) / (-110).