Сравните сумму квадратов трёх первых из 5 последовательных натуральных чисел с суммой квадратов двух остальных чисел.

25 Апр 2019 в 19:50
191 +1
0
Ответы
1

Пусть первые пять натуральных чисел это 1, 2, 3, 4, 5.

Сумма квадратов трех первых чисел:
1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14

Сумма квадратов двух оставшихся чисел:
4^2 + 5^2 = 16 + 25 = 41

Таким образом, сумма квадратов трёх первых чисел (14) меньше, чем сумма квадратов двух остальных чисел (41).

28 Мая 2024 в 17:26
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 340 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир