Велосипедист масса которого вместе с машиной составляет 150 кг, трогается с места под действием силы тяги 90 H. Какой путь он проедет, пока его скорость не станет равна 10 м/с, если коэффициент сопротивления движению 0.01?

13 Дек в 19:40
5 +1
0
Ответы
1

Для решения задачи начнем с определения всех сил, действующих на велосипедиста.

Сила тяги (F_t): 90 НСила сопротивления (F_r): она рассчитывается по формуле ( F_r = k \cdot m \cdot g ), где:
( k ) — коэффициент сопротивления (0.01),( m ) — масса (150 кг),( g ) — ускорение свободного падения (примерно 9.81 м/с²).

Сначала найдем силу сопротивления:

[
F_r = 0.01 \cdot 150 \cdot 9.81 \approx 1.4715 \text{ Н}
]

Теперь определим результирующую силу, действующую на велосипедиста:

[
F_{net} = F_t - F_r = 90 \text{ Н} - 1.4715 \text{ Н} \approx 88.5285 \text{ Н}
]

Далее, используя второй закон Ньютона, найдем ускорение ( a ):

[
F{net} = m \cdot a \implies a = \frac{F{net}}{m} = \frac{88.5285}{150} \approx 0.5902 \text{ м/с}^2
]

Теперь мы знаем, что велосипедист движется с постоянным ускорением ( a \approx 0.5902 \text{ м/с}^2 ). Начальная скорость ( v_0 = 0 ) м/с, конечная скорость ( v = 10 ) м/с. Мы можем использовать уравнение движения с постоянным ускорением для нахождения пути ( s ):

[
v^2 = v_0^2 + 2as \implies s = \frac{v^2 - v_0^2}{2a}
]

Подставляя значения:

[
s = \frac{10^2 - 0^2}{2 \cdot 0.5902} \approx \frac{100}{1.1804} \approx 84.8 \text{ м}
]

Таким образом, путь, который проедет велосипедист до достижения скорости 10 м/с, составляет примерно 84.8 метра.

13 Дек в 19:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 94 317 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир