Шар A, движущийся со скоростью 10 м/с, налетает на такой же неподвижный шар B. После неупругого удара шары движутся как одно целое. На сколько градусов увеличилась температура шаров после столкновения, если в теплоту превратилось 40 % первоначальной кинетической энергии шара A? Удельная теплоемкость материала шаров 200 Дж/(кг К)
Для расчета увеличения температуры шаров после столкновения воспользуемся законом сохранения энергии. Изначально у шара A была кинетическая энергия, которая после столкновения стала внутренней энергией шаров.
Энергия, превращенная в тепло:
Q = 0.4 (1/2 m v^2) = 0.4 (1/2 m 10^2) = 20 * m Дж
Дано, что все это тепло ушло на повышение температуры шаров, поэтому можно написать уравнение:
Q = m c ΔT
где Q - количество тепла, превращенного во внутреннюю энергию, m - масса шаров, c - удельная теплоемкость материала, ΔT - изменение температуры.
Отсюда находим изменение температуры:
20 m = m c * ΔT
ΔT = 20 / c
ΔT = 20 / 200 = 0.1 K
Итак, температура шаров увеличилась на 0.1 градуса Цельсия после столкновения.
Для расчета увеличения температуры шаров после столкновения воспользуемся законом сохранения энергии. Изначально у шара A была кинетическая энергия, которая после столкновения стала внутренней энергией шаров.
Энергия, превращенная в тепло:
Q = 0.4 (1/2 m v^2) = 0.4 (1/2 m 10^2) = 20 * m Дж
Дано, что все это тепло ушло на повышение температуры шаров, поэтому можно написать уравнение:
Q = m c ΔT
где Q - количество тепла, превращенного во внутреннюю энергию,
m - масса шаров,
c - удельная теплоемкость материала,
ΔT - изменение температуры.
Отсюда находим изменение температуры:
20 m = m c * ΔT
ΔT = 20 / c
ΔT = 20 / 200 = 0.1 K
Итак, температура шаров увеличилась на 0.1 градуса Цельсия после столкновения.