Кусок металла, представляющий собой сплав меди и серебра в воздухе имеет вес 2,86 Н, а в бензине — 2,4 Н. Плотность бензина равна 700 кг/м³. С точностью до кубического сантиметра определи объём этого куска металла. (При расчётах прими g=10 м/с²).
Для начала определим объем куска металла в воздухе. По определению веса: $$m_1 \cdot g = 2,86 Н, \quad m1=m{металла}+V{металла} \cdot \rho{воздуха} \cdot g;$$ где
$m_1$ - масса куска металла в воздухе,$m_{металла}$ - масса самого металла,$V_{металла}$ - его объем,$\rho{воздуха}$ - плотность воздуха ($\rho{воздуха} = 1,2 \, кг/м^3$),$g$ - ускорение свободного падения.
Отсюда находим массу металла в воздухе: $$m_{металла}=2,86 \, Н / 10 \, м/с^2 = 0,286 \, кг.$$
Теперь найдем объем куска металла в бензине. По определению веса: $$m_2 \cdot g = 2,4 \, Н, \quad m2=m{металла}+V{металла} \cdot \rho{бензина} \cdot g;$$ где
$\rho_{бензина}$ - плотность бензина.
Зная, что $\rho{бензина} = 700 \, кг/м^3$, находим массу металла в бензине: $$m{металла} = 2,4 \, Н / 10 \, м/с^2 = 0,24 \, кг.$$
Таким образом, зная массу металла и его объем, можно найти объем куска металла: $$V{металла} = m{металла} / \rho_{металла} = 0,286 \, кг / 8900 \, кг/м^3 = 3,21 \cdot 10^{-5} \, м^3 = 32,1 \, см^3.$$
Таким образом, объем этого куска металла составляет 32,1 кубический сантиметр.
Для начала определим объем куска металла в воздухе.
$m_1$ - масса куска металла в воздухе,$m_{металла}$ - масса самого металла,$V_{металла}$ - его объем,$\rho{воздуха}$ - плотность воздуха ($\rho{воздуха} = 1,2 \, кг/м^3$),$g$ - ускорение свободного падения.По определению веса:
$$m_1 \cdot g = 2,86 Н, \quad m1=m{металла}+V{металла} \cdot \rho{воздуха} \cdot g;$$
где
Отсюда находим массу металла в воздухе:
$$m_{металла}=2,86 \, Н / 10 \, м/с^2 = 0,286 \, кг.$$
Теперь найдем объем куска металла в бензине.
$\rho_{бензина}$ - плотность бензина.По определению веса:
$$m_2 \cdot g = 2,4 \, Н, \quad m2=m{металла}+V{металла} \cdot \rho{бензина} \cdot g;$$
где
Зная, что $\rho{бензина} = 700 \, кг/м^3$, находим массу металла в бензине:
$$m{металла} = 2,4 \, Н / 10 \, м/с^2 = 0,24 \, кг.$$
Таким образом, зная массу металла и его объем, можно найти объем куска металла:
$$V{металла} = m{металла} / \rho_{металла} = 0,286 \, кг / 8900 \, кг/м^3 = 3,21 \cdot 10^{-5} \, м^3 = 32,1 \, см^3.$$
Таким образом, объем этого куска металла составляет 32,1 кубический сантиметр.