Как найти плотность идеального газа без обьём и массы? Определите плотность одноатомного идеального газа при давлении 1,3·105 Па, если средняя квадратичная скорость его молекул равна 1,4·103 м/с.
Для нахождения плотности идеального газа без объема и массы можно воспользоваться уравнением состояния идеального газа:
PV = 1/3 N m * <v^2>
Где: P - давление газа V - объем газа N - количество молекул газа m - масса одной молекулы <v^2> - средняя квадратичная скорость молекул газа
Так как нам дано только давление и средняя квадратичная скорость, то мы можем выразить плотность через эти данные. Для одноатомного газа m = m_0 = 4*10^-26 кг, где m_0 - масса атома водорода.
Перепишем уравнение:
P = p * <v^2>
p = P / <v^2>
Подставляем данные:
p = 1,3 10^5 Па / (1,4 10^3 м/с)^2 ≈ 65,3 кг/м^3
Таким образом, плотность одноатомного идеального газа при давлении 1,3·10^5 Па и средней квадратичной скорости молекул 1,4·10^3 м/с составляет примерно 65,3 кг/м^3.
Для нахождения плотности идеального газа без объема и массы можно воспользоваться уравнением состояния идеального газа:
PV = 1/3 N m * <v^2>
Где:
P - давление газа
V - объем газа
N - количество молекул газа
m - масса одной молекулы
<v^2> - средняя квадратичная скорость молекул газа
Так как нам дано только давление и средняя квадратичная скорость, то мы можем выразить плотность через эти данные. Для одноатомного газа m = m_0 = 4*10^-26 кг, где m_0 - масса атома водорода.
Перепишем уравнение:
P = p * <v^2>
p = P / <v^2>
Подставляем данные:
p = 1,3 10^5 Па / (1,4 10^3 м/с)^2 ≈ 65,3 кг/м^3
Таким образом, плотность одноатомного идеального газа при давлении 1,3·10^5 Па и средней квадратичной скорости молекул 1,4·10^3 м/с составляет примерно 65,3 кг/м^3.