В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности 5 мА а амплитуда напряжения на конденсаторе 2 В. Определите напряжение на конденсаторе в тот момент когда сила тока будет 3 мА

13 Мая 2021 в 19:43
141 +1
1
Ответы
1

Для идеального колебательного контура справедливо уравнение:
[ U_L = U_C, ]
где ( U_L ) - напряжение на катушке индуктивности, ( U_C ) - напряжение на конденсаторе.

Из условия дано, что амплитуда колебаний силы тока в катушке индуктивности 5 мА, а амплитуда напряжения на конденсаторе 2 В:
[ I_L = 5 \, \text{мА} = 0.005 \, \text{А} ]
[ U_C = 2 \, \text{В} ]

Также известно, что текущая сила тока в момент времени ( t ) задается формулой:
[ I(t) = I_0 \sin(\omega t), ]
где ( I_0 ) - амплитуда тока, ( \omega ) - частота колебаний.

Тогда в момент времени ( t ) сила тока будет равна:
[ I(0) = 0.003 \, \text{А} ]

Частота колебаний равна, так как контур идеальный:
[ \omega = \frac{1}{\sqrt{LC}} ]

Таким образом, в момент времени ( t ) напряжение на конденсаторе будет равно напряжению на катушке:
[ U_L = U_C = I_L \cdot X_L, ]
где ( X_L = \omega L ) - индуктивное сопротивление.

Подставляем все известные значения и получаем:
[ U_L = 0.005 \cdot 2 \pi \cdot 0.005 = 0.0005 \cdot 2 \pi = 0.00157 \, \text{В} ]

Таким образом, напряжение на конденсаторе в момент времени, когда сила тока равна 3 мА будет равно 1.57 мВ.

17 Апр в 18:36
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир