С первого корабля на второй посылаются одновременно два звуковых сигнала по воздуху и в воде. Один сигнал был принят после другого через 2,0 с. При скорости звука в воздухе равной 340 м/с, а в воде -1480 м/с. Определить расстояние между кораблями
Пусть расстояние между кораблями равно х метров, время, за которое звук пройдет это расстояние в воздухе, равно t1 = x / 340 секунд, а в воде - t2 = x / 1480 секунд.
Так как звуки были посланы одновременно, то разница времени между получением и воздушным и водным сигналом должна быть равна 2 секундам: x / 1480 - x / 340 = 2.
Решая это уравнение, получаем: x / 1480 - x / 340 = 2, (340x - 1480x) / (1480340) = 2, (1140x) / (1480340) = 2, x = (2 1480 340) / 1140 = 986.67 м.
Таким образом, расстояние между кораблями составляет 986.67 метров.
Пусть расстояние между кораблями равно х метров, время, за которое звук пройдет это расстояние в воздухе, равно t1 = x / 340 секунд, а в воде - t2 = x / 1480 секунд.
Так как звуки были посланы одновременно, то разница времени между получением и воздушным и водным сигналом должна быть равна 2 секундам:
x / 1480 - x / 340 = 2.
Решая это уравнение, получаем:
x / 1480 - x / 340 = 2,
(340x - 1480x) / (1480340) = 2,
(1140x) / (1480340) = 2,
x = (2 1480 340) / 1140 = 986.67 м.
Таким образом, расстояние между кораблями составляет 986.67 метров.