Момент инерции вала относительно оси, удаленной на расстоянии r от оси симметрии, можно определить по формуле:
I = I0 + Mr^2
где I0 - момент инерции вала относительно его оси симметрии, M - масса вала, r - расстояние от оси симметрии до другой оси.
Дано:M = 81 кг,r = 42 см = 0,42 м,I0 = 1/2 M R^2, где R - радиус вала.
Вычислим I0:R = 81 см = 0,81 мI0 = 1/2 81 0,81^2 = 1/2 81 0,6561 = 26,59105 кг*м^2
Теперь вычислим момент инерции вала относительно оси, удаленной на 42 см:I = 26,59105 + 81 0,42^2 = 26,59105 + 1/2 81 0,1764 = 26,59105 + 7,1376 = 33,72865 кгм^2
Ответ: Момент инерции вала массой 81 кг и радиусом 81 см, относительно оси, удаленной от оси симметрии на 42 см, равен 33,72865 кг*м^2.
Момент инерции вала относительно оси, удаленной на расстоянии r от оси симметрии, можно определить по формуле:
I = I0 + Mr^2
где I0 - момент инерции вала относительно его оси симметрии, M - масса вала, r - расстояние от оси симметрии до другой оси.
Дано:
M = 81 кг,
r = 42 см = 0,42 м,
I0 = 1/2 M R^2, где R - радиус вала.
Вычислим I0:
R = 81 см = 0,81 м
I0 = 1/2 81 0,81^2 = 1/2 81 0,6561 = 26,59105 кг*м^2
Теперь вычислим момент инерции вала относительно оси, удаленной на 42 см:
I = 26,59105 + 81 0,42^2 = 26,59105 + 1/2 81 0,1764 = 26,59105 + 7,1376 = 33,72865 кгм^2
Ответ: Момент инерции вала массой 81 кг и радиусом 81 см, относительно оси, удаленной от оси симметрии на 42 см, равен 33,72865 кг*м^2.