Образующая конуса равна 36см, а радиус основания равен 3см. Найдите высоту конуса и его объем. С подробным решением

3 Дек 2020 в 19:40
605 +1
0
Ответы
1

Обозначим радиус основания конуса как (r), высоту как (h) и объем конуса как (V).

Известно, что радиус (r = 3 \, \text{см}). Также известно, что образующая (l = 36 \, \text{см}).

Высота конуса (h) можно найти по теореме Пифагора для треугольника, образуемого радиусом, половиной образующей и высотой конуса:

(h = \sqrt{l^2 - r^2} = \sqrt{36^2 - 3^2} = \sqrt{1296 - 9} = \sqrt{1287} \approx 35.88 \, \text{см}).

Теперь можем найти объем конуса по формуле:

(V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \cdot 3^2 \cdot \sqrt{1287} \approx \frac{1}{3}\pi \cdot 9 \cdot 35.88 \approx 113.25 \, \text{см}^3).

Таким образом, высота конуса составляет приблизительно 35.88 см, а его объем приблизительно равен 113.25 кубическим сантиметрам.

17 Апр 2024 в 21:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 157 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир