Доказать, что в равнобедренной трапеции углы при каждом основании равны.
Доказательство:
Рассмотрим равнобедренную трапецию ABCD, где AD = BC. Проведем отрезки AC и BD, соединяющие вершины A и C, а также B и D, соответственно.
Поскольку трапеция является равнобедренной, то углы при основаниях AD и BC равны. Пусть это углы A и C. Также из условия трапеции следует, что отрезок AC параллелен отрезку BD.
Теперь рассмотрим треугольники ABC и ACD. В этих треугольниках углы при вершине A равны (по условию равнобедренности трапеции), углы BAC и DAC равны, так как это углы параллельных прямых, и стороны AB и AD равны.
Из этого следует, что треугольники ABC и ACD равны по стороне и двум углам, составляющим эту сторону. Таким образом, углы при основаниях равнобедренной трапеции также равны.
Таким образом, углы при каждом основании равнобедренной трапеции равны.
Задача:
Доказать, что в равнобедренной трапеции углы при каждом основании равны.
Доказательство:
Рассмотрим равнобедренную трапецию ABCD, где AD = BC. Проведем отрезки AC и BD, соединяющие вершины A и C, а также B и D, соответственно.
Поскольку трапеция является равнобедренной, то углы при основаниях AD и BC равны. Пусть это углы A и C. Также из условия трапеции следует, что отрезок AC параллелен отрезку BD.
Теперь рассмотрим треугольники ABC и ACD. В этих треугольниках углы при вершине A равны (по условию равнобедренности трапеции), углы BAC и DAC равны, так как это углы параллельных прямых, и стороны AB и AD равны.
Из этого следует, что треугольники ABC и ACD равны по стороне и двум углам, составляющим эту сторону. Таким образом, углы при основаниях равнобедренной трапеции также равны.
Таким образом, углы при каждом основании равнобедренной трапеции равны.
Доказательство завершено.