Используем теорему Тале:
AC/BD = AM/MD = MC/DC
Так как AC = 25 и DC = 24, то:
25/BD = AM/MD = MC/24
Также, по теореме Пифагора в треугольнике AMC:
AC^2 = AM^2 + MC^2
25^2 = AM^2 + MC^2
625 = AM^2 + MC^2
AM = 625 - MC^2
Подставляем это выражение в отношение AM/MD = MC/DC:
25/BD = (625 - MC^2) / MD = MC / 24
Отсюда получаем:
MC = 24 * (625 - MC^2) / 25BD
MC = 24 (625 - MC^2) / (25 BD)
MC = (15000 - 24MC^2) / (25BD)
25BD * MC = 15000 - 24MC^2
625BD = 15000 - 24MC
24MC^2 + 624MC - 15000 = 0
Решая это уравнение, получаем два значения для MC:
MC = 12 или MC = -50/3
Так как MC не может быть отрицательным, то MC = 12.
Итак, MC = 12.
Используем теорему Тале:
AC/BD = AM/MD = MC/DC
Так как AC = 25 и DC = 24, то:
25/BD = AM/MD = MC/24
Также, по теореме Пифагора в треугольнике AMC:
AC^2 = AM^2 + MC^2
25^2 = AM^2 + MC^2
625 = AM^2 + MC^2
AM = 625 - MC^2
Подставляем это выражение в отношение AM/MD = MC/DC:
25/BD = (625 - MC^2) / MD = MC / 24
Отсюда получаем:
MC = 24 * (625 - MC^2) / 25BD
MC = 24 (625 - MC^2) / (25 BD)
MC = (15000 - 24MC^2) / (25BD)
25BD * MC = 15000 - 24MC^2
625BD = 15000 - 24MC
24MC^2 + 624MC - 15000 = 0
Решая это уравнение, получаем два значения для MC:
MC = 12 или MC = -50/3
Так как MC не может быть отрицательным, то MC = 12.
Итак, MC = 12.